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The Babylonian bridal auction, described by Herodotus, is regarded as one of the earliest
uses of an auction in history. Yet, to our knowledge, the literature lacks a formal
equilibrium analysis of this auction. We provide such an analysis for the two-player case
with complete and incomplete information, and in so doing identify what we call the
“Herodotus paradox.”
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1. Introduction

Cassady (1967) and Milgrom and Weber (1982) note that Herodotus’ account of 500 B.C. Babylonian bridal auctions is
one of the earliest recorded uses of an auction in history. According to the translation by Rawlinson (1885),1 Herodotus
wrote:

“Once a year in each village the maidens of age to marry were collected. . . Then a herald called up the damsels one
by one, and offered them for sale. He began with the most beautiful. . . when the herald had gone through the whole
number of the beautiful damsels, he should then call up the ugliest. . . and offer her to the men, asking who would
agree to take her with the smallest marriage-portion. . . The marriage-portions were furnished by the money paid for the
beautiful damsels. . . ”

We examine a simultaneous-move (sealed bid) version of Herodotus’ Babylonian bridal auction with two suitors and two
maidens. Suitor i ∈ {1,2} values the more beautiful of the two maidens at v B

i > 0 and the less attractive maiden at v L
i < v B

i .
The higher bidder wins the more beautiful maiden, and pays the auctioneer the amount bid by the lower bidder. The
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auctioneer then transfers this entire amount to the lower bidder as a “sweetener” along with the less fair of the two
maidens. Notice that, as in Herodotus’ original account, the “sweetener” is a transfer from the winner to the loser, such that
the auctioneer’s revenues are zero in the mechanism.

The payoff to suitor i when he bids xi ∈ [0,∞) and suitor j bids x j ∈ [0,∞) is:

ui
(
xi, x j; v B

i , v L
i

) =

⎧⎪⎨
⎪⎩

v B
i − x j if xi > x j

1
2 (v B

i − x j + v L
i + xi) if xi = x j

v L
i + xi if xi < x j

(1)

We assume that in the case of a tie the auctioneer allocates the maidens to the bidders based on the flip of a fair coin.
Notice that in the case of complete information and symmetric values (v B

i = v B > v L
i = v L ), this is a constant-sum game.

In Section 2 we examine this auction with complete information. We show that the standard technique used to construct
symmetric mixed-strategy equilibria (which involves identifying an atomless mixed strategy in which each player’s expected
payoff is constant on its support and verifying that a player cannot improve his payoff by submitting a bid outside of
the support) yields an apparent paradox: There exists a continuum of symmetric mixed-strategy equilibria in which each
player earns an arbitrarily high payoff, despite the fact that the game is constant-sum and bids are pure transfers between
the two players. We show that this paradox stems from the fact that the standard techniques for constructing mixed-
strategy equilibria in games of complete information are not sufficient to guarantee that the resulting mixed strategy is a
symmetric Nash equilibrium. In particular, the standard steps identify a symmetric mixed strategy, F ∗ , such that, for any
bid contemplated by one player, his expected payoff is constant on its support and cannot be improved by deviating to a
bid outside of the support, so that xi is a best response to F ∗ . Notice that if an outside arbiter assigns each player a pure
strategy that is an independent draw from such an F ∗ , and each player’s particular assignment is private information, then
neither suitor has an incentive to unilaterally deviate from his assigned bid, as the expected payoff from submitting any such
assigned bid cannot be improved by submitting any alternative bid. The paradox stems from the fact that this “assignment
equilibrium” is not a Nash equilibrium because expected utility with respect to the joint distribution induced by F ∗ does
not exist. In other words, even though F ∗ is an “assignment equilibrium,” F ∗ is not a best response to F ∗ because players
cannot determine their (ex ante) expected utility from employing F ∗ as a strategy.

More formally, the Herodotus paradox is related to the following question. Suppose S1 and S2 are separable metric
spaces of pure strategies with associated sets of mixed strategies �(Si) consisting of regular Borel probability measures,
and let ui : Si × S j → R denote the (measurable) payoff function of player i. Suppose that μi ∈ �(Si) and let μi ⊗ μ j
denote the associated product measure on the product Borel σ -field B(Si) ⊗ B(S j). Further suppose that, ∀xi ∈ Si :∫

S j

ui(xi, x j)dμ j

exists and is finite, and that each μi is a mixed strategy that assigns all probability measure to the (nonempty set of) xi ’s
that are best responses (in Si ) to μ j . Does it follow that∫

Si×S j

ui(xi, x j)d(μi ⊗ μ j)

exists (even as an extended real)? Our analysis of the Babylonian bridal auction reveals that the answer is no, and hence,
μi ’s satisfying these properties are not mutual best responses in the Babylonian bridal auction. Indeed, this is an example
in which Fubini’s Theorem does not hold:

∫
Si

[∫S j
ui(xi, x j)dμ j]dμi �= ∫

S j
[∫Si

ui(xi, x j)dμi]dμ j .

We also show that, while nonexistence of expected utility in the Babylonian bridal auction stems from the unbound-
edness of payoffs, there are many economic games (including the war of attrition, the sad loser auction, and a variant of
the Babylonian bridal auction) with unbounded payoffs that do not lead to existence problems. The primary take-away from
our analysis is that it is important to add an additional step to the standard analysis for constructing mixed-strategy Nash
equilibria in games with unbounded payoffs: One must verify that players’ utilities are integrable with respect to the joint
distribution of putative equilibrium mixed strategies. To the best of our knowledge, this point has not been identified in the
literature; in fact, we stumbled upon it purely because of the Herodotus paradox.

Section 3 shows that similar issues arise in games of incomplete information, thereby demonstrating that the issues
are not purely an artifact of mixed strategies. In auctions with incomplete information, the standard five step method
used to derive symmetric pure strategies in fact yields interim equilibria, and these equilibria may not comprise an ex
ante equilibrium because of the failure of ex ante expected utility to exist. We provide an example in the context of the
Babylonian bridal auction that leads to the Herodotus paradox with incomplete information: Conditional on the maidens
being unveiled (so that their values are private information to the suitors), there exists a continuum of (interim) equilibria
in which players earn an arbitrarily high payoff—even though all moments of the assumed value distribution are finite. Yet,
none of these paradoxical equilibria are ex ante equilibria. As before, the failure of these equilibria to constitute ex ante
equilibria arises because the ex ante expected utility arising from the (paradoxical) interim equilibria cannot be computed
in the first place.
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2. The bridal auction with complete information

Suppose first that players are symmetric and have complete information, so that v B
i ≡ v B and v L

i ≡ v L in Eq. (1). One
may readily verify that x∗ = (v B − v L)/2 is a symmetric pure-strategy equilibrium, and that this is the unique symmetric
pure-strategy equilibrium.2 In this equilibrium, each suitor earns a payoff of EU = 1

2 (v B + v L).

2.1. A paradox

The standard approach for finding a symmetric mixed-strategy equilibrium typically involves three steps: (1) identify a
“candidate” continuous distribution function F such that each player’s expected payoff is constant on its support, given that
the rival’s bid is determined by F , (2) verify that “candidate” F is indeed a well-defined continuous cumulative distribution
function, and (3) show that neither player can unilaterally increase his payoff by submitting a bit outside of the support of
F , given that the rival’s bid is determined by F .

Following this approach, suppose the rival suitor bids according to an atomless F on [m, u] (so that the probability of a
“tie” is zero). Then the expected payoff to a player that submits a bid of x ∈ [m, u] against his rival’s F is

EU(x) =
x∫

m

(v B − s)dF (s) +
u∫

x

(v L + x)dF (s) =
x∫

m

(v B − s) f (s)ds +
u∫

x

(v L + x) f (s)ds

Using step (1) and letting f denote the density of F , constancy of expected payoffs requires that for all x ∈ [m, u]:

0 = d

dx
EU(x) = (v B − x) f (x) − (v L + x) f (x) +

u∫
x

f (s)ds = (v B − v L − 2x) f (x) + 1 − F (x)

which implies v B − v L − 2x < 0 for x ∈ [m, u). The solution to this differential equation is

F (x) = 1 −
(

c

v B − v L − 2x

) 1
2

where c < 0 is a constant determined in step (2).
Moving to step (2), for this to be a well-defined continuous distribution function requires F (m) = 0, which implies

c = v B − v L − 2m < 0 (and hence, m > (v B − v L)/2). Next, setting F (u) = 1 implies u = ∞. Hence, the candidate symmetric
equilibrium entails each suitor i submitting a bid, xi , based on a cumulative distribution function

F ∗(xi) = 1 −
(

v B − v L − 2m

v B − v L − 2xi

) 1
2

on [m,∞) (2)

where m ∈ ( v B −v L
2 ,∞) is arbitrary. To complete step (2), notice that F ∗ is a well-defined atomless probability distribution

with density

f ∗(xi) = dF ∗

dxi
=

(
v B − v L − 2xi

v B − v L − 2m

) 1
2
(

2m + v L − v B

(v B − v L − 2xi)
2

)
> 0.

Turning to step (3), the expected payoff to a player that submits a bid of x ∈ [m,∞) against his rival’s F ∗ is

EU(x) ≡
x∫

m

(v B − s)dF ∗(s) +
∞∫

x

(v L + x)dF ∗(s) = v L + m (3)

which is constant on [m,∞). Note that for x′ < m, EU(x′) = v L + x′ < EU(m), which means a suitor cannot improve his
payoff by submitting a bid below m, given that the rival’s bid is based on F ∗ .

Thus, applying the usual reasoning—that is, steps (1) through (3)—one would conclude that F ∗ is a symmetric mixed-
strategy Nash equilibrium in which each player earns a finite expected payoff of EU∗ = v L + m < ∞. Notice that, since
m > (v B − v L)/2 is arbitrary, there is a continuum of such equilibria and, for arbitrarily large m, each player’s payoff is
arbitrarily large (but finite) in any such equilibrium. This is what we call the Herodotus paradox with complete information:
The bid transferred to the loser exactly equals the amount paid by the winner (the auctioneer earns zero profit with
probability one), so it would seem that sum of the two suitors’ payoffs is constant (v B + v L ). Yet, application of steps (1)
through (3) leads to the conclusion that players can earn an arbitrarily high expected payoff in a symmetric mixed-strategy
Nash equilibrium. That is, the mixed strategies derived using standard arguments appear to lead to a “utility pump.”

2 Uniqueness follows from Proposition 1 in Baye et al. (forthcoming).
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2.2. A closer look at the paradox

The Herodotus paradox suggests that the standard arguments used to derive mixed-strategy equilibria may be incom-
plete. Notice that the standard arguments imply that if one suitor’s bid is a random draw from F ∗ , then the other suitor
is indifferent between submitting any bid x ∈ [m,∞) and strictly prefers such a bid to bidding x′ < m. Based on this, it is
tempting to conclude that—so long as one suitor randomizes based on F ∗—the other suitor can do no better than to also
choose a bid at random from F ∗ , since it places all mass on [m,∞). Using Eqs. (1) and (3), this reasoning would seem to
imply that the equilibrium expected payoff to a player that randomizes against F ∗ by (independently) using F ∗ himself is
(letting μ∗

xi ,x j
denote the product measure induced by F ∗(xi) and F ∗(x j))

ui
(

F ∗, F ∗) ≡
∫

[m,∞)×[m,∞)

ui
(
xi, x j; v B

i , v L
i

)
dμ∗

xi ,x j

=
∞∫

m

∞∫
m

ui
(
xi, x j; v B

i , v L
i

)
dF ∗(xi)dF ∗(x j) (4)

=
∞∫

m

∞∫
m

ui
(
xi, x j; v B

i , v L
i

)
dF ∗(x j)dF ∗(xi) (5)

=
∞∫

m

EU(xi)dF ∗(xi)

= v L + m

It turns out that this reasoning fails in the Babylonian bridal auction with complete information: F ∗ is not a best response
to F ∗—not because there is a profitable deviation, but because ui(F ∗, F ∗) does not exist. Consequently, the conditions of
Fubini’s Theorem (Chung, 1974, pp. 59–60) are not satisfied; indeed, in the case at hand the (Lebesgue–Stieltjes) integrals
in Eqs. (4) and (5) are not equal.3 In short, ui(F ∗, F ∗) �= ∫ ∞

m EU(xi)dF ∗(xi), and it is erroneous to use the fact that EU(xi) =
v L +m is constant for xi ∈ [m,∞) and EU(xi) < v L +m for xi < m to conclude that F ∗ is a best response to F ∗ . The Herodotus
paradox—that the sum of the putative equilibrium payoffs can exceed v B + v L by an arbitrarily large amount—stems from
the fact that the putative strategies do not comprise a Nash equilibrium in the first place.

To establish these assertions, first recall that the expectation of a random variable X does not exist if E[X+] = E[X−] =
∞, where X+ ≡ max(0, X) and X− ≡ max(−X,0) (see Chung, 1974, p. 40). We will demonstrate that ui(F ∗, F ∗) does not
exist by taking X ≡ ui(xi, x j; v B

i , v L
i ) and showing that E[X+] = E[X−] = ∞.

Note that E[X+] and E[X−] both exist since they are, by definition, expectations of nonnegative real numbers. Hence,
Fubini’s Theorem (see Chung, 1974, p. 60) implies that the integral of X+ and X− with respect to the product measure
induced by F ∗ can be written as a double integral that is invariant to the order of integration.4

Thus, for the case at hand,

E
[

X+] ≡ E
[
max(ui,0)

] =
∞∫

m

∞∫
m

max
(
(v B − x j),0

)
Ix j<xi dF ∗(xi)dF ∗(x j)

+
∞∫

m

∞∫
m

max
(
(v L + xi),0

)
Ixi<x j dF ∗(xi)dF ∗(x j)

The first term is finite, since the integrand is bounded above by v B . The second term is

∞∫
m

∞∫
m

max
(
(v L + xi),0

)
Ixi<x j dF ∗(xi)dF ∗(x j) =

∞∫
m

∞∫
m

(v L + xi)Ixi<x j f ∗(xi) f ∗(x j)dxi dx j

= v L

∞∫
m

∞∫
m

Ixi<x j f ∗(xi) f ∗(x j)dxi dx j +
∞∫

m

∞∫
m

xi Ixi<x j f ∗(x j) f ∗(xi)dx j dxi

3 Indeed, one can show that
∫ ∞

m

∫ ∞
m ui(xi , x j; v B

i , v L
i )dF ∗(xi)dF ∗(x j) = v B − m while

∫ ∞
m

∫ ∞
m ui(xi , x j; v B

i , v L
i )dF ∗(x j)dF ∗(xi) = v L + m.

4 The integrals below are interpreted as Lebesgue–Stieltjes integrals. Although Lebesgue–Stieltjes integration does not generally coincide with Riemann–
Stieltjes integration, in the present case the two methods coincide. Thus, either method may be used to verify the steps below.
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= v L

∞∫
m

∞∫
m

Ixi<x j f ∗(xi) f ∗(x j)dxi dx j +
∞∫

m

xi f ∗(xi)

∞∫
m

Ixi<x j f ∗(x j)dx j dxi

= v L

∞∫
m

∞∫
m

Ixi<x j f ∗(xi) f ∗(x j)dxi dx j +
∞∫

m

xi f ∗(xi)
(
1 − F ∗(xi)

)
dxi

Once again the first term is finite. The second term is

∞∫
m

xi f ∗(xi)
(
1 − F ∗(xi)

)
dxi =

∞∫
m

xi

(
v B − v L − 2xi

v B − v L − 2m

) 1
2
(

2m + v L − v B

(v B − v L − 2xi)
2

)(
v B − v L − 2m

v B − v L − 2xi

) 1
2

dxi

=
∞∫

m

xi

(
2m + v L − v B

(v B − v L − 2xi)
2

)
dxi

= (2m + v L − v B)

∞∫
m

xi

(v B − v L − 2xi)
2

dxi

= ∞
Hence, we conclude that E[X+] = ∞. Similarly,

E
[

X−] ≡ E
[
max(−ui,0)

] =
∞∫

m

∞∫
m

max
(−(v B − x j),0

)
Ix j<xi dF ∗(xi)dF ∗(x j)

+
∞∫

m

∞∫
m

max
(−(v L + xi),0

)
Ixi<x j dF ∗(xi)dF ∗(x j)

=
∞∫

m

f ∗(x j)max
(−(v B − x j),0

) ∞∫
m

Ix j<xi f ∗(xi)dxi dx j

=
∞∫

m

f ∗(x j)max
(−(v B − x j),0

)(
1 − F ∗(x j)

)
dx j

=
v B∫

m

0 dx j +
∞∫

v B

(x j − v B)
(
1 − F ∗(x j)

)
f ∗(x j)dx j

= −v B

∞∫
v B

(
1 − F ∗(x j)

)
f ∗(x j)dx j +

∞∫
v B

x j
(
1 − F ∗(x j)

)
f ∗(x j)dx j

The first term is once again bounded. The second term is

∞∫
v B

x j
(
1 − F ∗(x j)

)
f ∗(x j)dx j =

∞∫
v B

x j

(
v B − v L − 2m

v B − v L − 2x j

) 1
2
(

v B − v L − 2x j

v B − v L − 2m

) 1
2
(

2m + v L − v B

(v B − v L − 2x j)
2

)
dx j

=
∞∫

v B

x j

(
2m + v L − v B

(v B − v L − 2x j)
2

)
dx j

= ∞
Since E[X+] = E[X−] = ∞, E[X] ≡ ui(F ∗, F ∗) does not exist. Thus, F ∗ is not a symmetric Nash equilibrium to the Babylonian
bridal auction, so the unique symmetric Nash equilibrium is x∗ = (v B − v L)/2.

To summarize, existence of a symmetric mixed-strategy Nash equilibrium requires that F ∗ be an (ex ante) best response
to F ∗ . The F ∗ constructed based on standard arguments (the three steps described above) does not satisfy this condition—
not because there is a profitable deviation, but because the expectation cannot be computed in the first place. The larger
point is that in auctions and contests with “spillovers” and payoff functions that are unbounded, it is important to add
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to steps (1) through (3) a fourth step: one must (4) verify that each player’s utility is integrable with respect to the joint
distribution of putative equilibrium mixed strategies—F ∗ in this case.5 In the interest of full disclosure, we stumbled upon
the relevance of the fourth step purely because of the paradox; had F ∗ not led to a paradox, we would have presumed it
was a legitimate equilibrium to the Babylonian bridal auction.

It is important to stress that, in games where payoff functions are bounded, if steps (1) through (3) are satisfied then
step (4) is automatically satisfied. However, there are a number of important games in economics where payoff functions
are unbounded and steps (1) through (3) lead to a symmetric mixed strategy with unbounded support. Probably the best
known example is the war of attrition, where the analogue of Eq. (1) is

ui(xi, x j; v) =
⎧⎨
⎩

v − x j if xi > x j
1
2 (v − x j − xi) if xi = x j

−xi if xi < x j

and the analogue to Eq. (2) is

F ∗
War(x) = 1 − exp(−x/v) on [0,∞)

Notice, however, that with X ≡ ui(xi, x j; v), E[X+] < ∞ and E[X−] < ∞. Hence in the war of attrition, utility is integrable
with respect to the joint distribution induced by F ∗

War . In other words, step (4) is satisfied in the war of attrition, so F ∗
War is

indeed a symmetric mixed-strategy Nash equilibrium.
As a second example, consider a variant of the Babylonian bridal auction in which the low bidder receives, in addition

to the transfer from the winning bidder, a matching dowry from an outside party. In this case,

ui(xi, x j) =
⎧⎨
⎩

v B − x j if xi > x j
1
2 (v B − x j + v L + 2xi) if xi = x j

v L + 2xi if xi < x j

(6)

One may directly verify that x∗ = (v B − v L)/3 is a symmetric pure-strategy equilibrium. In addition, there also exists a
continuum of “candidate” symmetric mixed-strategy equilibria that satisfy steps (1) through (3), which is as follows: For
every m ∈ ( v B −v L

3 ,∞),

F ∗
Dow(x) = 1 −

(
v B − v L − 3m

v B − v L − 3x

) 2
3

on [m,∞)

Straightforward calculations reveal that, since X ≡ ui(xi, x j), E[X+] < ∞ and E[X−] < ∞. Thus, step (4) is also satisfied.
It follows that F ∗

Dow is a symmetric mixed-strategy equilibrium in which each player earns an expected payoff of EU∗ =
2m + v L ∈ ( 2

3 v B + 1
3 v L,∞). Since m > (v B − v L)/3 is arbitrary, there is a continuum of such equilibria in which each

player’s expected payoff is arbitrarily large. However, the Babylonian bridal auction with a matching dowry does not exhibit
a Herodotus paradox, since these arbitrarily high payoffs come out of the hide of the outside party that pays the matching
dowry. Interestingly, for any given m ∈ ( v B −v L

3 ,∞),
∫ ∞

m x dF ∗
Dow = ∞, so that the expected bid of each player is unbounded.

This illustrates that unbounded expected bids do not imply the failure of a candidate equilibrium that satisfies steps (1)
through (3) to, in fact, be a Nash equilibrium.6

2.3. Discussion

This analysis illustrates that there are games where mixed strategies satisfy the standard three steps (constancy of
payoffs on the support, well-defined probability distribution, and no profitable deviation outside of the support) but yet do
not comprise a Nash equilibrium. Nonetheless, in these instances a mixed strategy constructed using steps (1) through (3)
may be viewed as an assignment equilibrium: If an outside arbiter assigns each player a pure strategy that is an independent
draw from a mixed strategy satisfying steps (1) through (3) and each player’s particular assignment is private information,
then given the assigned pure strategy each player’s expected payoff exists and is given by EU(xi).

For the case of the Babylonian bridal auction with complete information, if an outside arbiter assigns each suitor a
bid xi , it is common knowledge that each player’s bid assignment is an independent draw from F ∗ , and each suitor’s
particular assignment is private information, then given the assigned bid each suitor’s expected payoff exists and is given by
EU(xi) = m + v L ∈ ( 1

2 v B + 1
2 v L,∞). Moreover, neither suitor has an incentive to deviate from xi , as the expected payoff from

submitting any such assigned bid is constant on [m,∞) and cannot be improved by submitting any alternative bid. Thus,

5 A random variable is integrable if its expectation exists and is finite; see Chung (1974, p. 40). If one is willing to admit equilibria in which players
earn infinite equilibrium payoffs, one can replace this fourth step with a step that merely verifies existence of expected utility with respect to the product
measure induced by F ∗ .

6 The complete information version of the Riley–Samuelson sad loser auction is another example of a game that has a symmetric mixed-strategy Nash
equilibrium where players’ expected bids are unbounded.
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steps (1) through (3) essentially yield an equilibrium to this assignment game. The equilibrium to this assignment game is
not a Nash equilibrium to the original game, however, since players cannot compute their (ex ante) utility from participating
in this assignment game. Indeed, the Herodotus paradox is related to a similar observation made by Bhattacharyya and
Lipman (1995) in the context of a speculative bubble game. They show that two symmetric traders can enjoy positive
expected gains to exchange, despite the fact that the gain to one trader in any realization exactly equals the loss to the
other trader. Similar to the Herodotus paradox, this result stems from the fact that the underlying game does not have an
ex ante equilibrium (owing to the nonexistence of ex ante expected utility), but does have an interim equilibrium.

In contrast, the symmetric equilibrium mixed strategies in the war of attrition and the Babylonian bridal auction with a
matching dowry satisfy steps (1) through (4), so these mixed strategies are both an equilibrium to the original game (the
mixed strategies are mutual best responses) and an equilibrium to the assignment game (any xi assigned is a best response
to the rival’s mixed strategy).

3. The bridal auction with incomplete information

The paradox identified above is neither an artifact of mixed strategies nor the assumption that the players have complete
information. To see this, suppose that it is common knowledge that both suitors value the lesser maiden at v L

i ≡ 0, but that
the suitors’ valuations of the fairer maiden are privately observed random variables, v B

i ≡ vi , which are independently and
identically distributed with an exponential distribution function, G(v) = 1 − exp(−v) on [0,∞) with associated density
g(v) = exp(−v). Note that E[vk] = (k − 1)! for all k = 1,2,3, . . . . Hence, all moments of the assumed value distribution are
bounded, including E[v] = 1. Thus, each suitor’s (ex ante) expected value of the most beautiful of the two maidens is unity.7

Under these assumptions, Eq. (1) simplifies to

ui(xi, x j; vi) =
⎧⎨
⎩

vi − x j if xi > x j
1
2 (vi − x j + xi) if xi = x j

xi if xi < x j

The standard approach to solving for a symmetric (pure-strategy) equilibrium in this incomplete information environ-
ment is to: (1) assume that the rival follows a monotonically increasing bid function, x j(v j), that maps the rival’s valuation
into a bid; (2) determine the bid, xi , that solves the first-order condition for maximizing i’s expected payoff given that he
knows his own valuation is vi but not the specific valuation of the rival; (3) impose symmetry of the two players’ bid
functions and solve for a candidate symmetric equilibrium bid function; (4) verify that it is monotonically increasing; and
(5) verify that a player cannot profitably deviate from the symmetric bid function.

In the case at hand, step (1) implies that the expected payoff to suitor i who knows his own valuation vi , but not that
of his rival, is

EU(xi, x j; vi) =
x−1

j (xi)∫
0

[
vi − x j(v j)

]
exp(−v j)dv j +

∞∫

x−1
j (xi)

xi exp(−v j)dv j

Next, apply step (2) by differentiating with respect to xi and setting the marginal expected payoff equal to zero, and then
apply step (3) by letting xi(v) = x j(v) = x(v) to obtain x′(v) = 2x(v)− v . The solution to this first-order ordinary differential
equation is

x(v) = K exp(2v) + v

2
+ 1

4
(7)

Turning to step (4), note that x(v) is strictly increasing for all K � 0, so there is a continuum of such candidate equilibria
with K � 0.

Finally, turning to step (5), note first that the support of the random variable vi is [0,∞). Consequently for any K � 0,
the rival’s bid x j ∈ [K + 1

4 ,∞) in the putative equilibrium. This implies that player i cannot gain by deviating to a bid below
K + 1

4 since doing so yields player i a payoff of xi < K + 1
4 with probability one, which is dominated by bidding xi = K + 1

4
and earning a payoff of K + 1

4 (with probability one the rival suitor’s valuation is strictly positive and hence x j > K + 1
4

with probability one). If both suitors play the putative equilibrium strategies, then the expected payoff to a suitor whose
valuation of the maiden is vi is

EU
(
x(vi), x(v j); vi

) = K + vi − 3

4
+ exp(−vi)

7 Results similar to those described below obtain for other distributions, including the unit Pareto distribution where G(v) = 1 − v−1 on [1,∞) and
E[v] = ∞.
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where K � 0. It is routine matter to establish that there is no incentive for player i to deviate to an alternative bid xi ∈
[K + 1

4 ,∞); see Baye et al. (2010).
Thus, applying the usual reasoning—steps (1) through (5) in this case—one would conclude that the strategies identified

in Eq. (7) comprise a symmetric Bayesian–Nash equilibrium. Since steps (1) through (5) hold for any K � 0, there is a
continuum of symmetric pure-strategy equilibria in which a player whose valuation is vi ∈ [0,∞) earns a (finite) expected
payoff of EU = K + vi − 3

4 + exp(−vi) ∈ [vi − 3
4 + exp(−vi),∞). This is the Herodotus paradox with incomplete information:

Even though all moments of the value distribution are bounded, and conditional on values any payment by one suitor is a
pure transfer to the other, application of steps (1) through (5) leads to the conclusion that players can earn an arbitrarily
high (but finite) expected payoff in a symmetric pure-strategy equilibrium.

The equilibrium strategies that obtain from steps (1) through (5), and which are summarized for the case at hand in
Eq. (7), correspond to an interim equilibrium in that each suitor knows his own valuation of the maidens, but not the
valuation of the rival suitor. Expressed differently, the paradoxical equilibrium corresponds to a situation where the two
maidens are unveiled, and each suitor knows his own valuation of the most beautiful maiden but not how much the rival
suitor values her. Once the maidens are unveiled (that is, conditional on each player’s private information), there is a well-
defined (interim) equilibrium in which each player can earn an arbitrarily high (interim) expected payoff.

Given the prospect of achieving such a blissful state once the maidens are unveiled, would the two players have an
incentive to attend the auction in the first place to learn the private information required to play the interim equilib-
rium strategies? That is, do the putative strategies comprise an ex ante equilibrium? The answer is that when K > 0
the suitors’ (ex ante) payoffs suffer from the same integrability problem that arose in the case of complete information:
E[X+] ≡ E[max(ui,0)] = ∞ and E[X−] ≡ E[max(−ui,0)] = ∞ (see Baye et al., 2010 for details). That is, for K > 0, ex ante
expected utility does not exist and hence they are incapable of determining whether or not to participate in the auction
prior to the maidens being unveiled. Thus, the symmetric ex ante Bayesian–Nash equilibrium is unique and given by Eq. (7)
with K = 0.

It is important to stress that the nonexistence of ex ante expected utility for K > 0 does not stem from the nonexistence
of interim expected utility; indeed for any value vi ∈ [0,∞) observed when the maidens are unveiled, each player’s expected
(interim) payoff is finite and given by EU(vi) = K + vi − 3/4 + exp(−vi). Nor does nonexistence stem from pathological
properties of the value distribution; all moments of the value distribution are bounded (and in fact, E[vi] = 1). And, although
each player’s expected bid is infinite when K > 0, this is not sufficient for the failure of interim equilibria to be ex ante
equilibria. Indeed, in an incomplete information variant of the Babylonian bridal auction with a matching dowry, there exist
continua of both interim and ex ante symmetric equilibria even though each player’s expected bid is unbounded; see Baye
et al. (2010).

The analysis thus highlights that the standard methods used to derive symmetric pure-strategy equilibria in auctions
with incomplete information, in fact, yield interim equilibria. Indeed, there are a number of important games of incomplete
information in economics where steps (1) through (5) lead to unbounded bid functions, including the war of attrition (cf.
Bishop et al., 1978; Riley, 1980) and the sad loser auction (Riley and Samuelson, 1981). However, it is straightforward to
show that integrability conditions hold for these two games, and thus the interim equilibria are also ex ante equilibria.
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