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Abstract. Tullock’s analysis of rent seeking and overdissipation is reconsidered. We show
that, while equilibrium strategies do not permitoverdissipation in expectation, for particular
realizations of players’ mixed strategies the total amount spent competing for rents can exceed
the value of the prize. We also show that the cross-sectionalincidence of overdissipationin the
perfectly discriminating contest ranges from 0.50 to 0.44 as the number of players increases
from two to infinity. Thus, even though the original analysis of overdissipation is flawed, there
are instances in which rent-seekers spend more than the prize is worth.

1. Introduction

Gordon Tullock’s seminal contribution in the area of rent-seeking, and waste-
ful over-dissipation in particular, has not had the influence outside ofPublic
Choicethat it deserves. The purpose of this paper is to point out that even
though his original analysis of overdissipation is technically flawed, the defin-
ition of overdissipation can be modified to explain instances in which rational
rent-seekers spend more to win a prize than the prize is worth.

Specifically, since Tullock’s seminal paper in 1967 most of the literature
has focused on the degree to which the competition for rent dissipates that
rent. While this literature extends across several fields,1 it is concentrated
to a large extent in the field of public choice,2 where a standard tool in the
theoretical analysis of rent-seeking is Tullock’s rent-seeking game (1975,
1980). In this game, n risk-neutral players enjoy complete information and
simultaneously submit nonnegative bids for a prize worth Q dollars. Letting
(x1, . . . , xn)≥ 0 denote the bids of players 1 through n, the probability player
1 wins the prize is given by

∗ Part of this research was completed when Kovenock was on leave at the Tinbergen Insti-
tute and when Baye was affiliated at The Pennsylvania State University. We benefitted from
the suggestions of an anonymous referee, Heinrich Ursprung, and the editor’s observations at
the Public Choice meetings in San Francisco.
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pi(x1, . . . , xn) =
{

1/n if x1 = x2 = . . . = xn = 0,
xR

i∑n
j=1 xR

j
otherwise.

Here R is a parameter, R> 0. If R =∞, then the game becomes perfectly
discriminating and coincides with the all-pay auction. The payoff to player i
from submitting a bid of xi when the other n-1 players submit bids of x−i ≡
(x1, x2, . . . , xi−1, xi+1, . . . xn) is given by

Ui(xi, x−i) = pi(xi, x−i)Q− xi .

Henceforth, we will refer to this symmetric, simultaneous-move game of
complete information as theTullock game.

By the end of the 1970s, two competing postulates emerged about rent-
seeking games:

Posner’s Rent Dissipation Postulate:In equilibrium, the total expenditures
of rent-seekers equals the value of the prize.

Tullock’s Rent Dissipation Postulate: In equilibrium, rent-seeking expen-
ditures exceed the value of the prize when R> n/(n - 1).

Posner’s postulate (1975) relies on a strong free-entry assumption: If existing
rent-seekers were in the aggregate spending less than the value of the prize,
their expected profits would be positive. This would induce entry by other
rent-seekers until profits are driven to zero. Tullock’s postulate is based on
the Tullock game and his observation that when R> n/(n–1), the sum of the
solutions to each player’s first order conditions exceeds the value of the prize
Q. Tullock (1980, 1984, 1985, 1987, 1989) devoted considerable attention to
this possibility, presumably because of the strong implication for excessive
social waste.3 Indeed, as R increased, the amount of overdissipation would
tend to infinity. A large literature emerged in an attempt to eliminate the
apparent overdissipation of rents by altering the Tullock game.4 Contributions
in this line of research include Corcoran (1984), Corcoran and Karels (1985),
Higgins, et al. (1987), Michaels (1988), Allard (1988), Leininger (1993),
Leininger and Yang (1994) and Ellingsen (1991).

It is now widely recognized (Hillman and Samet (1987), Baye, et al. (1989,
1993, 1994, 1996)) that expected overdissipation is not part of a Nash equi-
librium to the Tullock game for any value of R, even as R approaches infinity.
The reason is that the Tullock game has a pure strategy Nash equilibrium if
and only if R≤ n/(n–1). For R> n/(n–1) the symmetric solution to the play-
ers’ first order conditions for expected payoff maximization does not yield
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a global maximum; at this solution players have a negative expected payoff,
which is dominated by bidding zero. Thus, Tullock’s postulate is based on a
false premise.

In light of this, it is perhaps surprising that we demonstrate below that the
overdissipation postulatefor which Tullock is most frequently criticized can,
in fact, be defended on theoretical grounds within the confines of his original
model! The defense, it turns out, relies on the fact that when the Tullock
parameter exceeds n/(n–1) the Nash equilibrium involves mixed-strategies.
Specifically, Baye, Kovenock, and de Vries (1994) show that equilibrium
mixed strategies in the Tullock game do not permitoverdissipation in expec-
tation: the expected total amount spent competing for rents cannot exceed the
value of the prize.5 However, since the equilibrium involves mixed-strategies,
it turns out that for particular realizations of the mixed strategies the total
amount spent competing for rents can exceed the value of the prize! In fact,
we show below that the cross-sectionalincidence of overdissipationmay be
quite high. For a symmetric perfectly discriminating contest (R =∞), the
probability of overdissipation in a symmetric equilibrium is roughly one-half,
ranging from exactly one-half in the two player case to approximately .44 as
the number of players approaches infinity.

The implication of this is straightforward: even when rent-seekers have
complete information and are “perfect calculators”, roughly one-half of the
time they will spend more in the aggregate than the prize is worth. Roughly
equally frequently they will, as a group, spend less than it is worth. This
stochastic nature of the overdissipation of rents when R> n/(n - 1) is the
conceptual innovation that we examine in Sections 2 and 3 of this paper.

2. Defining the overdissipation of rents

For the two player case, Tullock postulated that equilibrium entails the overdis-
sipation of rents when R> 2. As we noted in the introduction, in this case
the only Nash equilibria to the Tullock game are in nondegenerate mixed-
strategies. For this reason, it is necessary to distinguish between the expected
level of rent dissipation that arises based on the ex ante strategies employed
by players, and the level of rent dissipation that arises ex post (that is, for
particular realizations of the strategies). In addition, it is useful to distinguish
situations where the group as a whole spends more than the value of the prize
(either in an ex ante or ex post sense) from those in which one or more
individuals each spend more than the value of the prize. This gives rise to
four alternative notions of theoverdissipationof rents:
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(EIO) Expected Individual Overdissipation occurs if an individual
player’s expected bid exceeds the value of the prize.

(EAO) Expected Aggregate Overdissipationoccurs if the expected sum
of the payments by the players exceeds the value of the prize.

(PIO) Probabilistic Individual Overdissipation occurs if there is a pos-
itive probability that an individual player bids more than the value
of the prize.

(PAO) Probabilistic Aggregate Overdissipationoccurs if there is a pos-
itive probability that the sum of all players’ bids exceeds the value
of the prize.

The following result is immediate and shows the relation among these four
definitions of overdissipation.

Proposition 1: For the Tullock game,
(a) EIO⇒ EAO⇒ PAO;
(b) EIO⇒ PIO⇒ PAO.

Thus, for the Tullock game, the broadest of the definitions of overdissipation
is PAO, and the most narrow is EIO. Notice that the contrapositive of Proposi-
tion 1 implies that if there is not probabilistic aggregate overdissipation, then
there is not overdissipation in the other three senses either.

3. Equilibrium overdissipation in the Tullock model?

We begin with

Proposition 2: There do not exist equilibria to the Tullock game in which
EAO, EIO, or PIO arise.

The formal proof of this proposition merely involves extending the results
in Baye, Kovenock and de Vries (1994) from the two player case to the n-
player case, and is thus omitted. The essential intuition can be seen by noting
that a player can guarantee a payoff of at least zero by bidding zero. Hence,
no equilibrium strategy can involve PIO, since bids above Q guarantee a
negative payoff, and hence are strictly dominated. Similarly, no equilibrium
can involve EIO because EIO requires PIO. Finally, since the above argument
implies that Ui (xi , x−i )≥ 0 for every i, summing over all players and noting
that the prize is awarded with probability one implies that no equilibrium
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can involve EAO. Furthermore, these arguments are valid for both pure and
nondegenerate mixed-strategy equilibria.

Interestingly, however, the Tullock game does exhibit probabilistic aggre-
gate overdissipation when R exceeds n/(n-1):

Proposition 3: Suppose R> n/(n-1). Then in any Nash equilibrium to the
Tullock game, PAO arises.

Proposition 3 follows directly from that fact that equilibria to Tullock’s
original game involve non-degenerate mixed-strategies if R> n/(n-1). It in-
dicates that an incidence of aggregate overdissipation is indeed possible in
the original Tullock framework, but only in those instances where the equi-
librium involves nondegenerate mixed-strategies and when one looks atag-
gregate ex postexpenditures. We will illustrate that the actual incidence of
overdissipation due to PAO can be quite high.

To this end we will use as a benchmark the perfectly discriminating (Hill-
man and Riley (1989)) or first-price all-pay auction (Baye et al. (1989, 1993,
1996)) version of the Tullock game. This game form is the limiting case of
the Tullock game when R =∞; thus, the probability that player i wins the
prize is one if player i submits the highest bid and zero otherwise.6 The R =
∞ case is a useful benchmark because Baye, Kovenock, and de Vries (1993)
have shown that at this level of R the expected level of rent dissipation is
maximized. Furthermore, when R =∞ there is complete rent dissipation in
the sense of EAO (the expected sum of the bids exactly equals the value of
the prize).

Without loss of generality, suppose the value of the prize, Q, equals 1.
Hence the payoff to player i as a function of the vector of bids of all n players
is

Ui(x1, x2, . . . , xn) =


−xi if ∃j such that xj > xi

1
m − xi if i ties for high bid with m− 1 others

1− xi if x i > xj ∀j 6= i.

For n = 2 the unique equilibrium of this game is symmetric (Hillman and
Riley, 1989). For n> 2 there is a continuum of asymmetric equilibria as well
as a unique symmetric equilibrium (Baye, Kovenock and de Vries, 1996).
We focus here on the symmetric mixed-strategy equilibrium, which involves
players randomizing according to a continuous mixed strategy with associ-
ated cumulative distribution function F(x) ≡ x1/(n−1) on [0,1]. This symmet-
ric equilibrium fully dissipates rents in the sense of EAO, as do all of the
asymmetric equilibria (Baye, Kovenock, and de Vries, 1996).
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Since each player’s bid is a random draw from F and the value of the prize
is one, there cannot be overdissipation in the sense of either EAO, EIO, or
PIO (this illustrates Proposition 2). However, notice that there is a positive
probability that the sum of the realizations of the players’ bids exceeds 1, i.e.
the assumed value of the prize.

To see this, let z = x1 + x2 + . . . + xn denote the sum of the bids. Notice
that z is a random variable induced by the mixed strategies employed by the
players, so let G(Z) = Prob{z≤ Z} be its cumulative distribution function.
The probability of overdissipation is given by the probability that the sum of
the bids exceeds unity, which is Prob{z> 1} = 1 – G(1). The symmetric Nash
equilibrium mixed strategies imply that each xi has a density f(xi ) = axi

a−1 on
[0, 1], where a = 1/(n–1). Hence,

G(1) = an
∫ 1

0
xa−1

n

∫ 1−xn

0
xa−1

n−1 . . .

∫ 1−xn−xn−1...−x2

0
xa−1

1 dx1dx2 . . . dxn. (1)

We now state the following general result:

Proposition 4.Suppose R =∞ and n≥ 2 in the original simultaneous-move
Tullock game. Then in any symmetric equilibrium we have PAO∈ [0.44, 0.5].
More specifically:
a. The probability of aggregate overdissipation is

1−G(1) = 1−
(

n− 1

n

)[
0

(
n

n− 1

)]n−1

. (2)

where0(t) = ∫∞0 xt−1e−xdx is theGamma function;
b. The probability of aggregate overdissipation is monotonically decreas-

ing in the number of players;
c. The probability of aggregate overdissipation is maximized in the two

player case in which the probability of aggregate overdissipation is ex-
actly 1/2;7

d. In the limit as the number of players tends to infinity, the probabil-
ity of aggregate overdissipation tends to 1− e−γ ≈ .44, whereγ is
Euler’s constant.8 Hence, the probability of aggregate overdissipation is
bounded from below by .44.

Proof: See the Appendix.

Proposition 4 makes it clear that Tullock’s postulate is, in a sense, correct:
in the aggregate, rent-seekers may frequently spend more to win a prize than
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the prize is worth. This result helps explain why PAO is confirmed in some
of the published experimental literature (cf. Millner and Pratt, 1989, 1990) as
well as in the experiments we have run at the CREED laboratory, see Potters,
de Vries and Van Winden (1997). The theoretical and empirical literatures
can be reconciled because when R> n/(n – 1), equilibria of the Tullock game
involve nondegenerate mixed-strategies.

It is worthwhile to provide some intuition for the contents of Proposition
4. In the two player case, it is easy to see why the incidence of aggregate
overdissipation must be positive: with probability1/2·1/2 = 1/4 both players bid
more than1/2. As the number of players increases, players begin submitting
low bids more frequently than higher ones. The increase in the number of
players is not sufficient to offset this effect, and thus the incidence of aggre-
gate overdissipation falls as the number of players rises. It is not too difficult
to see why the incidence remains strictly within the interval (0, 1) as the
number of players n increases. If the incidence of aggregate overdissipation
tended to 1 as the number of players approached infinity, then in the limit
the sum of the bids would exceed the value of the prize with probability one.
This would violate individual rationality, since each player is guaranteed a
payoff of at least zero in any Nash equilibrium. A similar arbitrage argument
precludes the incidence from converging to zero as the number of players
goes to infinity.

4. Other rent-seeking contests

It is of interest to apply our new definitions of overdissipation to other types
of contests. This will also make it clear why it is useful to make a distinction
between individual and aggregate overdissipation.

Consider, for instance, the (stationary) symmetric equilibrium of the two
person symmetric war of attrition, which is equivalent to a second-price all-
pay auction. Assume that the value of the prize and the cost to each player per
unit of time spent fighting both equal one, and that there is no discounting.
Each player’s symmetric equilibrium strategy in this game is mixed and is
represented by the cdf, G(t) = 1− e−t. This gives the probability that the
player stops fighting before t. In the interpretation as a second-price all-
pay auction it is the probability the player bids below t. The game ends at
the minimum realized stopping time. The time elapsed equals the cost in-
curred by each player. Hence, the distribution of the cost incurred by each
player fighting for the prize is the distribution of the minimum order statistic
Gmin(t) = 1− [1−G(t)]2 = 1−e−2t, which also gives the distribution of the
game’s termination time.
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The expected payoff to each player in this equilibrium is zero. Since each
player incurs a cost of 1 per unit of time until the game ends, if the game
stops after t =1/2, the aggregate cost of the contest will exceed the value
of the prize; overdissipation will arise. Hence, PAO characterizes the sym-
metric equilibrium. Aggregate overdissipation occurs with probability 1−
Gmin(1/2) = e−1 ≈ .368, which is lower than in the first-price all-pay auction.

The war of attrition, unlike the first-price all-pay auction, also has the
property that the probability of overdissipation by asingleplayer is nonzero,
i.e. PIO is also a property of the symmetric equilibrium. In this equilibrium,
if the game ends after t = 1eachplayer’s individual cost is greater than the
value of the prize. This event has probability 1−Gmin(1) = e−2 ≈ .135.

This makes it clear that Tullock’s original postulate is, in a way, correct;
every individual player can make payments that are greater than the value
of the prize. Individual overdissipation, however, cannot occur in the game
Tullock examined (in which all players pay their own bids) or in the manner
Tullock described (ex anteexpectation).

Another rent-seeking contest in which it is possible for individual players
to make payments greater than the value of the prize is the sad-loser auction.
In this auction each player i simultaneously bids xi. The highest bidder wins
the prize (of value 1) and is refunded her bid. The remaining bidders forfeit
their bids.

This type of auction might be viewed as a reduced-form for situations,
such as contests for procurement contracts, in which the bids represent pre-
award (prototype) development costs, and the winning bidder can recoup
these costs under the terms of the contract. In the two bidder case the individ-
ual players’ symmetric equilibrium bidding strategies are G(x) = x/(1+ x),
which has an unbounded mean. Each player earns a zero payoff in expec-
tation. The aggregate payment in the game is the minimum order statistic,
which has a distribution Gmin(x) = 1−[1/(1+x)]2. Hence the probability of
aggregate overdissipation is 1−Gmin(1) = 1/4. Since only the loser pays, this
is also the probability that there is individual overdissipation by some player.
Hence, PIO and thus also PAO characterize the symmetric equilibrium to this
game.

Like the first price all-pay auction, the war of attrition and the sad loser
auction are contests with complete information. Of course, if we allow for
incomplete information it should not seem surprising that overdissipation
is possible, and that the probability of overdissipation will depend on the
distributional assumptions maintained when transforming the game to one
of complete, but imperfect information in which types are chosen by nature.
Due to the lack of a clear benchmark model, we omit a formal analysis at this
stage.
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5. Conclusion

Gordon Tullock has done the profession a great service by pointing to the
need to understand how institutions affect the wasteful expenditure of re-
sources on rent seeking. Tullock’s (1980) description of rent seeking through
a contest has become the industry’s standard. This contest does not have a
pure strategy equilibrium for a range of the exponent parameter R, but a
mixed strategy solution exists. Initially, this was not well understood and
led to some speculation that there might be overdissipation. As a response9

several interesting perturbations of the game, including versions with a se-
quential move structure, risk aversion and entry, have been investigated. But
as we have made clear (see Baye, Kovenock and de Vries (1994)), the Nash
concept never leads to overdissipation in an expected sense as long as indi-
viduals have the chance to opt out of the game and receive a payoff of zero
(by spending zero).

Even though the Nash concept precludesexpectedoverdissipation in the
Tullock game, for particular realizations of the players’ mixed strategies,
aggregate expenditures may exceed the value of the prize. In this paper we
therefore introduced the concept of the incidence of overdissipation, and cal-
culated this incidence for some of the standard contests used for modelling
rent-seeking behavior. For the perfectly discriminating version of Tullock’s
original game, we showed that an increase in the number of players lowers
the incidence, but it never drives it down to zero.

In light of the results in Section 3, we believe Tullock should reassess
his distaste for mixed-strategy Nash equilibria. There are well-reasoned jus-
tifications of mixed-strategy Nash equilibria appearing in the literature (see,
for instance, Brandenburger (1992)). For those like Tullock who are search-
ing for a justification for overdissipation, it would seem that a powerful ra-
tionale for using mixed-strategies is that they can generate an incidence of
overdissipation.10

Otherwise, one must not only propose an alternative solution concept for
his game, but an alternative justification for the overdissipation of rents. Mixed
strategies, as it turns out, provide both the needed solution concept as well as
a defense for the Tullock postulate.

In concluding, we note that there are solution concepts that can rationalize
overdissipation in expectation. For instance, it is possible to find rationaliz-
able strategies that yield overdissipation in expectation. However, these strat-
egy choices cannot constitute a Nash equilibrium and, hence, if the choices
or conjectures generating them were mutual knowledge, at least one player
would not be playing rationally. Likewise, overdissipation in expectation can
arise inε-equilibria to the Tullock game. However, when Gordon Tullock
(1989) claims that the theory of efficient rent seeking is “based on the theory
that people are perfect calculators”, and dismisses experimental work for
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relying on the computational ability of MBA students who clearly “are not
making correct calculations”, it is clear that he has a Nash-like consistency
requirement in mind. Section 3 above shows thatincidencesof aggregate
overdissipation are not at odds with Nash consistency. Tullock’s postulate
is indeed correct: perfectly rational individuals might spend more, in the ag-
gregate, competing for a prize than it is worth. But Tullock was right for the
wrong reason.

Notes

1. See, for instance Posner (1975) and Fudenberg and Tirole (1987) in industrial organiza-
tion, Krueger (1974) and Bhagwati (1982) in international trade, and Linster (1993) in the
analysis of international alliances.

2. See surveys by Brooks and Heijdra (1989), Nitzan (1994), or Rowley (1991).
3. Tullock (1989) noted regarding the overdissipation result. . . “when I demonstrated that

perfect calculation leads to decidedly odd results even in a competitive market with free
entry, I astonished myself”. He went on to note that the original (1980) paper “was re-
jected by theJournal of Political Economyon the argument that it could not possibly be
true that a competitive market would reach these results”. In explaining why experiments
run with MBA students for n = 2 and R = 3 did not yield overdissipation on average he
reasoned “it is clear that the people concerned are not making correct calculations”, and
“it seems to me that . . . these people do notunderstand the game”.

4. In addition, numerous studies focus on the special case where R = 1 (see, for instance,
Nitzan (1991); Paul and Wilhite (1991)). In this case, the solution to the first-order con-
ditions do indeed yield a Nash equilibrium, but there is not overdissipation in the corre-
sponding equilibrium.

5. Baye, Kovenock and de Vries (1994) analyze the case of n = 2 and R> 2. The method of
proof is similar for n> 2 and R> n/(n–1).

6. In the case of a tie among m players for the highest bid, each has a probability (1/m) of
winning the prize.

7. For n = 3 this probability is 1 –π /6≈ 0.48, while for n = 4 it is approximately 0.466.
8. See Abramovitz and Stegun (1965). Formally,γ is defined by

γ = limh→∞
[
1+ 1

2
+ 1

3
+ . . .+ 1

h
− log h

]
.

9. The working paper version of this paper (Baye, Kovenock, and de Vries, 1997) contains
a more detailed response to Tullock’s (1995) comments.

10. Recent work by Che and Gale (1996) shows that the symmetric equilibrium mixed-
strategies that we identify are identical to the pure strategy bidding functions that arise
when rent-seekers face budget constraints and incomplete information about the size of
rivals’ budgets.
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Appendix

To evaluate the multiple integral in equation (1) of the text, we use the following
lemma:

Lemma A1: Let ϕ(w) ≡ ∫ 1−w
0 xr(1 − w − x)s dx. Thenϕ(w) = (1 − w)r+s+1

β(r+ 1, s+ 1), whereβ(r+ 1, s+ 1) ≡ ∫ 1
0 xr(1− x)s dx is theBeta function.

Proof:
ϕ(w) ≡ ∫ 1−w

0 xr(1− w− x)s dx

= (1−w)r+s+1
∫ 1

0 tr(1− t)s dt

= (1−w)r+s+1β(r+ 1, s+ 1)

by the change of variable t= x/(1−w). Q.E.D.

Proof of Proposition 4:

(a) Applying the Lemma (taking w= 1− xn− xn−1− . . .− x2, r = a− 1, s= 0,
and x= x1) gives us

G(1) = an
∫ 1

0 xa−1
n

∫ 1−xn
0 xa−1

n−1 . . .
∫ 1−xn−...−x3

0 xa−1
2 (1− x1− . . .− x2)

a

β(a,1)dx2dx3 . . .dxn.

Again, using the Lemma (taking w= 1− x1− . . .− x3, r = a− 1, s= a, and
x = x2) gives

G(1) = anβ(a,1)β(a,a+ 1)
∫ 1

0 xa−1
0 . . .

∫ 1−xn−...−x4
0

xa−1
3 (1− x1− . . .− x3)

2adx3 . . .dxn,

and with w= 1− x1− . . .− x4, r = a− 1, s= 2a, and x= x3,

G(1) = anβ(a,1)β(a,a+ 1)β(a,2a+ 1)
∫ 1

0 xa−1
n . . .

∫ 1−xn−...−x3
0

xa−1
4 (1− xn− . . .− x4)

3adx4 . . .dxn.

Continuing in this fashion we obtain

G(1) = anβ(a,1)β(a,a+ 1)β(a,2a+ 1)β(a,3a+ 1) . . .
∫ 1

0 xa−1
n (1− xn)

(n−1)adxn

= anβ(a,1)β(a,a+ 1)β(a,2a+ 1)β(a,3a+ 1) . . . β(a, (n− 1)a+ 1).

Note thatβ(a,b) = 0(a)0(b)
0(a+b) , where0(t) = ∫∞

0 xt−1e−xdx is theGamma

function. Hence,11

G(1) = an0(a)0(1)
0(a+1)

0(a)0(a+1)
0(2a+1)

0(a)0(2a+1)
0(3a+1) . . .

0(a)0((n−1)a+1)
0(na+1)

= an[0(a)]n
0(na+1) = [a0(a)]

n

0(na+1) = [0(a+1)]n
0(na+1) =

(
1

a+1

)
[0(a+ 1)]n−1.

11. In these calculations we make use of the identities0(t+1) = t0(t) and0(n+1) =
n!, for t positive real and n positive integer valued.
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Using the definition of a gives the form in equation (2) of the text.
(b) To establish monotonicity, let P(a) = 1

1+a[0(1+ a)]1/a, where a∈ [0,1],a≡
a(n) = 1/(n−1), and n−1 denotes number of opponents. It is sufficient to show
that P(a) is decreasing in a, for this implies the probability of overdissipation,
1− P(a(n)), is increasing in n. Taking logs gives

log P(a) = −log(1+ a)+ 1

a
log0(1+ a).

Differentiating this expression yields

d logP(a)

da
= − 1

1+ a
− 1

a2
log0(1+ a)+ 1

a
9(a+ 1)

where9 is the Psi (or Digamma) function (see Abramowitz and Stegun, 1965).
Limiting values are obtained by l’Hôpital’s rule:

1
a2 [log0(1+ a)− a9(1+ a)]|a=0 =
9(1+a)−9(1+a)−a9′(1+a)

2a |a=0 =
−1

29
′(1+ a)|a=0 = −1

29
′(1) < 0

Hence
d log P(a)

da
|a=0 = −1− 1

2
9 ′(1) ≈ −1.82< 0

d log P(a)

da
|a=1 = −1

2
− [log0(2)−9(2)] = −1

2
− [0− .42] = −.08< 0.

To evaluate the intermediate values we write

d log P(a)

da
= 1

a2

{
− a2

1+ a
− log0(1+ a)+ a9(1+ a)

}
(A1)

and analyze the sign of the terms within the curled brackets on the interval
(0,1). Differentiating the term in brackets yields

− 2a
1+a + a2

(1+a)2
−9(1+ a)+9(1+ a)+ a9 ′(1+ a) =

a9 ′(1+ a)+ a2−2a−2a2

(1+a)2
=

a[9 ′(1+ a)− 2+a
(1+a)2

] =
a[9 ′(1+ a)− 1

1+a − 1
(1+a)2

]

We can concentrate on the term inside the last pair of square brackets, and write
y = 1+ a, y ∈ (1,2), so that the derivative of the bracketed term becomes:

9 ′(y)− 1

y
− 1

y2
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We will show that this term does not change sign as n≥ 2 increases. Toward
this end, note that

9 ′(y) ≡
∫ ∞

0

t e−yt

1− e−t dt

Now from the Taylor expansion of the exponential

1
1−e−t = et

et−1 = 1+t+t2/2+t3/6+...
t+t2/2+t3/6+... =

1+ 1
t+t2/2+t3/6+...

Hence, for t≥ 0:

t

1− e−t = t+ 1

1+ t/2+ t2/6+ . . . ≤ t+ 1

1+ t/2
≤ t+ 1

1+ t/2
≤ t+ 1

Thus
9 ′(y) <

∫∞
0 (t+ 1)e−ytdt

= ∫∞0 te−ytdt+ ∫∞0 e−ytdt

= 1
y

∫∞
0 tye−ytdt+ 1

y

∫∞
0 ye−ytdt

= 1
y2 + 1

y

and therefore

9 ′(y)− 1

y
− 1

y2 ≤ 0.

Now the proof of monotonicity of P(a) for a∈ [0,1] is complete as

d log P(a)

da
= 1

a2θ(a)

whereθ(a) is the expression between curled brackets in (A1). At the end points

θ(0) = 0, θ(1) = −0.08< 0

while the above analysis showed

θ ′(a) < 0 on(0,1] andθ ′(0) = 0

Combining these gives
θ(a) < 0 on(0,1]

Moreover,
1/a2 > 0 on(0,1]

so that
d log P(a)

da
= 1

a2
θ(a) < 0 on(0,1]

Hence log P(a) is decreasing on(0,1]. Incidently, note that

log P(0) = 9(1) = γ ≈ −.57

log P(1) = −log 2≈ −.69
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(c) This part follows directly from part (b).
(d) Setting h = n - 1, it follows that

limh→∞log
[
0

(
1+ 1

h

)]h

= limh→∞
[
log0

(
1+ 1

h

)]
/(1/h),

which by l’Hôpital’s rule equals

limh→∞
(
∂0(ω)

∂ω
/0(ω)

)
|ω=1+ 1

h
.

The expression∂0(ω)
∂ω

/0(ω) is the Psi or Digamma function (see Abramowitz
and Stegun (1965)) which, when evaluated atω = 1 is equal to−γ , where
γ ≈ .5772 is Euler’s constant. Hence, as h (and hence n) goes to infinity

G(1) = limh→∞
(

h

h+ 1

)[
0

(
h+ 1

h

)]h

= e−γ ≈ .5615.

Therefore, in the limit, the probability of overdissipation is approximately 0.4385.


